

EDITORIAL

Lived Experiences in Digitalized Policing and AI Surveillance

*Marc Schuilenburg & Jan Terpstra**

Abstract

The changes that digitalization and algorithmization bring to policing and surveillance have inspired a new body of scientific work. Despite the suggestion of radical change in police work, the authors identify the following gaps in scientific knowledge: effectiveness of digital and AI tools, resolving public value conflicts, data quality, responsibility for managing data flows, and the way people give meaning to digital and AI tools. The authors conclude that more work needs to be done in the study of this field, both in the form of empirical studies of lived experiences in relation to the digitalization of policing and in the development of adequate conceptual and theoretical frameworks.

Keywords: AI, Lived Experiences, Effectiveness Public Values, Data Quality, Policing, Surveillance.

1 Between Empirical Reality and Ideology

Over the past years, not only technological developers, police professionals, policymakers and data scientists have shown a growing interest in the use of complex digital and artificial intelligence (AI) tools in policing and security but also academic researchers.¹ This has resulted in a fast-growing number of publications about big data policing, AI, machine learning, large language models and innovative forms of real-time surveillance, monitoring and control systems (e.g., Brayne, 2021; Ferguson, 2017; Schuilenburg, 2025; Thüne et al., 2022). These developments raise many questions: some of a more practical and factual nature and others in relation to ethical, legal and social aspects (ELSA). How can AI tools, such as facial

* Marc Schuilenburg is professor Digital Surveillance at Erasmus University Rotterdam. Jan Terpstra is professor emeritus of Criminology at Radboud University Nijmegen and research fellow at Leiden University (Campus The Hague).

1 An important difference between digital applications and AI tools has to do with the degree of autonomy of an application. In this article, we use the following definition of AI: “A machine-based system that is designed to operate with varying levels of autonomy and that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers, from the input it receives, how to generate outputs such as predictions, content, recommendations, or decisions that can influence physical or virtual environment” (Art. 3 AI Act).

Marc Schuilenburg & Jan Terpstra

recognition, online data collection, emotion recognition and gunshot detection systems, help police organizations to predict, detect and prevent criminal activities? And can this be done in an ethically and legally responsible way, subject to strict proportionality, purpose limitation and oversight measures?

One of the first problems here is that it is often difficult to make a clear distinction between the empirical reality of the use of these instruments in policing and security and existing imaginations of what these technologies might be and what their effects are on tackling crime and nuisance – now and in the future. Both highly optimistic and very pessimistic views can be found, even at the same time and place. Many optimistic stories about AI tools to tackle crime, for example, are often based on anecdotes, personal experiences or stories shared by tech companies such as Palantir or Tesla to promote and sell their products to citizens and governmental agencies (Schuilenburg & Eski, 2025; Slobogin & Brayne, 2022; Terpstra & Salet, 2023). Morozov (2025) even speaks of the “new legislators of Silicon Valley” and points to the “evolution from capitalism (thesis) to philanthro-capitalism (anti-thesis) to cultural warfare as a profit center (synthesis)”.

An important factor that has contributed to this confusion and lack of clarity is that the notions of “digital transition” or “revolution” have important ideological dimensions. Recently, Balbi (2024) showed how the digitalization project derives its power and convincingness to a considerable part from this ideological nature. Although on a much smaller scale and in a somewhat adapted form, the five ideological core elements (or “mantras”) that Balbi distinguished can also be found in the digitalization and algorithmization of police work. In line with his work, this ideology defines the digital transformation of policing as “disruptive” (suggesting a “complete break” with the past), “total” (pretending that all activities of interest will change), “irresistible” and “inescapable”, promising a future in which the digital revolution will be completed, but will also require permanent involvement (Balbi, 2024, pp. 59-84; see also Daub, 2020, pp. 113-132).

The rhetorical power of this ideology is so strong and convincing that any doubt about its validity is often neglected or defined as “unrealistic”. The dominance of this ideology can make it difficult to get a proper view of the practice of digitalization and algorithmization in police work and security. This confusion is not only a problem for academic researchers but also for other people who, in their roles as police officers, security workers, citizens or politicians (e.g., Verhoeven, 2023), may have difficulty finding out what the digitalization of the police really is, what it means for them and what effects it may have. As a result, the ideology of digital transformation leads to a remarkable combination of, on the one hand, huge expectations and, on the other hand, a lack of transparency and opacity.

On closer inspection, however, there are several indications that in practice, the digitalization and algorithmization of police work do not bring us closer to the realization of the utopian thought of a radical change. For instance, Schuilenburg and Soudijn (2023) empirically showed that in contrast to suggestions of a radical shift to data-driven, highly sophisticated AI policing, the use of big data by the Dutch police – one of the most technologically advanced police forces worldwide – mainly involves relatively simple applications. In the Dutch context, applications of big data for the assessment of risks are hardly used. Many of the big data

applications that have been used have an internal, managerial objective. Despite the suggestion of radical change in police work as a consequence of digitalization and the rise of AI, most of the current local police work (by far the largest part of the police) corresponds with what happened two or three decades ago (Terpstra et al., 2021).

This conclusion also applies to how members of local police teams collect and use information in neighbourhoods (Stol, Strikwerda et al., 2025). The limited number of available evaluation studies shows that the high ambitions about predictive policing and the use of data for individual risk assessment, for example, often prove not to be realized in practice or only to a limited degree (Ferguson, 2017; Meijer & Wessels, 2019; Miller, 2020).

2 Scientific Issues

In addition to the empirical question about the factual use of digital innovations by the police, such as big data analysis or AI tools like facial and speech recognition software, online data collection, emotion recognition and chatbots, these developments raise a number of other important scientific issues. The first and most obvious issue is about the effectiveness (and efficiency) of these digital tools and instruments. In fact, we know surprisingly little about the effectiveness of digital and AI applications in policing and security. As was already mentioned in relation to predictive policing, there is a considerable lack of empirical evidence about the effectiveness of these tools. The limited number of evaluation studies shows that in many cases, the effectiveness is limited or cannot be confirmed (Afzal & Panagiotopoulos, 2025; Ferguson, 2017). The combination of, on the one hand, a lack of evidence of the overall effectiveness of these systems and, on the other hand, a continuing interest and enthusiasm for this kind of instrument and a (political) readiness to spend large budgets on their development remains a fascinating question (but one that cannot be answered here).

In addition to the issue of effectiveness, other, even more important public values and principles are at stake. This concerns the issue of resolving public value conflicts in the development and governance of digital and AI tools in policing and security. Safety and effectiveness are important values, but so are, among others, non-discrimination, privacy and accountability. These values are also important to evaluate how these systems have been designed and are operating in practice (see, for instance, Ferguson, 2017, pp. 187-201; Passchier, 2024; Schuilenburg, 2025; Stol, Wacher Lentz et al., 2025; Widlak et al., 2021). A recurring issue is the transparency and accountability of these digital systems. Even experts are often not able to understand how complex algorithms precisely operate. Data professionals involved in the Dutch predictive policing system (*Criminality Anticipation System*), for example, indicated that “in combination with the size of the data set and the high number of predictions, the internal decision logic of predictions was opaque in practice” (Waardenburg, 2021, p. 94).

This issue must be even more problematic for lay citizens. Especially in the case of automated decision-making, they generally will not know what kind of data

Marc Schuilenburg & Jan Terpstra

(also about themselves) has been used to make decisions that may have a direct impact on themselves, their family members and their private lives (Peeters et al., 2025; Terpstra & Salet, 2026). Demands for due process, justice, legality, proportionality, as well as fairness, respect and trust in the treatment of citizens may be endangered, for instance, because of so-called dirty data, invalid assumptions in algorithms, and/or the neglect of specific individual situations that are often denied in the logic of digitalized systems. For similar reasons, the outcomes of these systems may contribute to problems of inequality and/or a focus on certain groups in the population or the overpolicing of certain neighbourhoods. Biased data and biased logics may contribute to this. Here, it may also be difficult to get a proper view of these biases and how they have been created. This leads to the third scientific issue: data quality.

One of the main problems in complex digital systems is that the data or information they use may be invalid, lack accuracy, be biased or simply be wrong. Data are social constructs, and several dimensions play a role in this: (1) accuracy, (2) completeness, (3) trustworthiness of sources, (4) temporality and (5) accessibility (Leese, 2022, 2024). Accuracy and completeness, for example, are important issues in the investigation and enforcement of criminal offences because there will always be a lack of data on suspicious persons or criminal phenomena such as drug trafficking. Accessibility in this context is about whether data are readily available or whether they can be made available within a reasonable timeframe. Leese points out that “the issue in police contexts is, for example, often not whether data on a certain person, network or event do exist, but whether they can be accessed and used” (2024, p. 35).

Questions about data quality are especially important because data moves, replicates and transforms across different contexts. Kitchin et al. (2025) state that in the circulation of data, there is a continuous process of “replication, proliferation and data transformation”. Metaphors used for this process are “data flows” (McNally et al., 2012), “data streams” (Dourish & Gómez Cruz, 2018), “data journeys” (Leonelli, 2020) and “data mobilities” (Kitchin et al., 2025). Taken together, these concepts point out that digital data circulates differently from other materials in an organization. Data are shared among a wide variety of public and private organizations and the links between these data flows are causing increasing complexity in multi-agency networks or security assemblages. The new situation raises questions not only about the ownership of the data flows that are unlocked by algorithms but also about the legitimacy and transparency of government decisions and the accountability of decision-making processes because often a separation is created between data ownership on the one hand and decision-making processes by the organizations that use these data on the other hand (e.g., Busuioc, 2021; Peeters et al., 2025). Not only does the responsibility for managing data flows and the use of algorithms no longer lie with one party, but the consideration of the governance of public values at play is also no longer made in one place (Schuilenburg, 2025; Schuilenburg & Peeters, 2024).

The above-mentioned scientific issues are especially problematic because digital tools and AI systems may be perceived as having a sort of magical authority. Even if these errors are detected or if someone suspects them to be present, it may

take a lot of time and energy to deviate from the system and to convince the powers behind the system that something is wrong with it. This may contribute to feelings of alienation, powerlessness and social abstractness, which is especially problematic for those people who are already in a vulnerable and highly dependent, disadvantaged social and economic position (Peeters et al., 2025; Terpstra & Salet, 2026). In the long run, the dependence on these systems may also gradually endanger principles of democracy and an open society (Carr, 2025; Passchier, 2024), for instance, by limiting access to public places or by so-called chilling effects on potential protesters (Büchi et al., 2022; Schauer, 1978). In the case of the role of digital surveillance technology in the protest management of the climate movement Extinction Rebellion, Storbeck et al. (2025) pointed out that protesters (and police officers) adapt their behaviour in highly diverging ways, from hyper-transparency (“extreme openness”) to hyper-alertness (“extreme caution”).

3 Lived Experiences

The digitalization and algorithmization of police work are socio-technological tasks (e.g., Hadjimatheou & Fussey, 2025; Schuilenburg, 2025; Van Brakel & Govaerts, 2024). This means that there is a continuous interaction between human beings and technology and that classical oppositions between the social and the technical are called into question. This is evident from the use of digital and AI applications to improve public safety. The success or failure of this does not only lie in the technical quality of an AI tool; it also depends on the way in which a tool is used and experienced in practice – and for that, it depends on humans of flesh and blood.²

Several questions are relevant in this context. What meaning do people give to these tools? To what extent do they feel that these digitalized systems are transparent and treat them with respect? Do they feel that they have become dependent on these systems, or do they still feel that they have the room to make their own decisions? How do they try to cope with the limitations that have been imposed on them by these systems? Questions have also been asked about the consequences of these systems for the traditional workers in policing and security (“street-level bureaucrats”). It has often been suggested that digitalization may result in a loss of jobs, deskilling of workers, job alienation and, as a consequence, motivational problems, more refined and far-reaching control of workers, a loss of discretion and more distant or abstract relations between workers and between workers and their supervisors or managers (e.g., Martinaitis et al., 2021; Mishra et al., 2019; Terpstra et al., 2019; Turkle, 2015).

These questions may also be asked in relation to policing and security and are not limited to the often-mentioned necessity of keeping the “human in the loop”,

2 It is conceivable to go a step further and include non-human entities such as animals, plants and forests in the discussion on ‘lived experiences’ in digitalized policing and AI surveillance. At this moment, around 6% of total worldwide greenhouse gas emissions come from data centres using smart devices and training self-learning algorithms, for example (Peeters et al., 2025; Schuilenburg, 2025).

Marc Schuilenburg & Jan Terpstra

where professionals have the knowledge, skills and resources to prevent or correct bias and wrong decisions in digital and AI tools. Although all these functions are important, this is still quite an instrumental view of the “human factor” in digital systems. By keeping “humans in the loop”, human customization remains possible and there is an identifiable person who can be held responsible for concrete decisions. In this light, the European Union’s aim to make AI applications “human-centric” must also be understood. However, to understand how digitalized systems operate, the extent to which they meet public values, and what they mean in a much broader sense, one should also pay attention to the emotional, symbolic and cultural aspects of the digitalization and algorithmization of policing and security.

Do people feel that they are treated with respect? Are these systems experienced as “open”, informative and responsive? Do they feel recognized as fully accepted members of society? Do they see that they get the opportunity to voice their own views, or do they perceive themselves as being treated as a “number” or “deviant” by a system that, in their view, even enlarges their vulnerability and dependence? These questions are also about the need for people to be able to have a direct “human connection” that is experienced as what the German sociologist Rosa (2019) called “resonance” and is conceptualized in literature on “data-level bureaucracies” as “digital inclusion” (Peeters et al., 2025).

In studying these questions, one should realize that there are many important differences, not only in how people perceive these systems and give meaning to them but also in how they react in practice to these systems. These coping strategies may differ from conformity to open or hidden resistance. Partially, this will depend on differences between organizational systems and the technological tools that are used. The available and different forms of social and cultural capital that can be mobilized by people in their relationship with these organizations and systems may, however, also be an important factor.

4 Contributions to Special Issue

Scientific publications, often written in a distant, impersonal style with abstract concepts, may shed only limited light on how people give meaning to dramatic and profound events in their lives. Other disciplines may be better equipped to give expression to emotional feelings and processes of sense-making. For that reason, this Special Issue also gives room for two artists. Both **Nadine Stijns and Batya Brown** give expression to the feelings of the thousands of victims of the Dutch childcare benefits scandal, a shocking example of how automated decision-making made wrongful decisions about innocent people, generally in a highly vulnerable position, that came to light in 2018. These people were falsely accused of social benefits fraud if they made minor errors in their paperwork, such as failing to submit supporting documents on time, but they did not have the means or power to resist these accusations. For many of them, their lives were completely ruined, often for many years (Terpstra & Salet, 2026). Although, in the end, the Dutch government admitted that terrible mistakes had been made, the recovery of

damages for them proved to be another nightmare for many years for these victims. This special issue includes a poem by **Batya Brown**, herself a victim of the childcare benefits scandal. **Nadine Stijns**, a visual artist and photographer, has given permission to publish some of her work in relation to this scandal and its victims.

The articles in this Special Issue are based on presentations given at the international and transdisciplinary symposium *AI-Experiences and Public Safety* on 8 and 9 April 2024 in Rotterdam, the Netherlands. This conference was organized by the Dutch Surveillance Studies group at Erasmus University Rotterdam. Each of the six articles included in this issue deals with “the human factor” or, more precisely, the perspectives and practices of human actors in relation to often quite complex forms of digitalized policing and security. In the first two articles, the focus is on the perspectives of policing officers and other security workers regarding digital tools before they are implemented in their work. This is followed by two articles that concentrate on how police officers in different positions use digital instruments and AI tools in their daily work. Next, there are two articles that show how digital tools have an impact not only on the perspectives and practices of both citizens and police officers but also on their dynamic relationships.

The first article is by **Naomi Theinert, Thom Snaphaan, Robin Khalfa, Charlotte Vandenbrande, Marlies Sas and Wim Hardyns**. It explores police officers’ expectations (or what the authors call “expected experiences”), self-reported knowledge and ethical considerations regarding new digital technologies, such as place-based big data systems, before they have been implemented in practice. The article is based on a survey of 522 Belgian police officers as respondents. This study shows that expectations differ between police officers in different positions. For instance, lower operational officers are less familiar with predictive algorithms, whereas there is a greater understanding among higher-ranked officers. Quite remarkable is that no relation was found between knowledge of the digital tools and the perception of their usefulness. The pre-implementation attitudes are often in line with post-implementation findings. This suggests that many of these attitudes have existed for a longer time prior to the implementation and are not clearly influenced by how the tool has been implemented.

Next, the article by **Freek de Haan and Vivien Butot** concentrates on the process of digital innovation in plural policing practices, understood by the authors as “ongoing projects”. The two innovations studied in this article have been characterized by an active cocreation by both “developers” and “users”, a distinction that in this approach loses much of its traditional relevance. Both innovations are seen as examples of “smart” and “AI-powered” forms of policing and originated in the context of the local public safety policy in Rotterdam, the Netherlands. The two innovations are a “digital note-keeping” and information system (including maps) and a “customisable mapping tool” to be used in community intelligence work. The underlying ambition of both systems is to promote the inter-agency sharing of information and to decompartmentalize municipal bureaucracy. The first system remained in use after the experimental phase, thanks to its bottom-up origin. The second system, however, did not result in tangible interventions due to the fact

Marc Schuilenburg & Jan Terpstra

that this innovation was too far away from the practices and perspectives of street-level officers and relied too much on a top-down approach.

The next two articles concentrate on the perspectives of operational police officers on the use of digital instruments and AI tools. **Martijn Wessels, Marc Schuilenburg and René van Swaanningen** show in their contribution how police officers handle algorithmic accountability in the case of a real-time AI-led violence detection system. Accountability for operational measures made with the support of AI is usually assigned to individual police officers. In the investigated surveillance unit, three different working styles of individual police officers could be distinguished: “hunter”, “investigator” and “system keeper”. In each of the three styles, police officers often decide not to follow the notification from the AI violence detection system. Several reasons were found why police officers give relatively low priority to notifications from the AI tool, such as that human relationships are seen as more important, uncertainty, limited knowledge and lack of oversight. One of the conclusions is that algorithmic accountability should be seen in relation to the existing internal accountability culture of the police.

Jasper de Paepe studied the use of different forms of digital technology in the context of community-oriented policing, both in the Netherlands and in Belgium. The author states that it is often assumed that digital technology will limit the discretion of individual police officers. However, this study shows that in practice, community police officers continue to use their discretion for making decisions about, for instance, how, when and where they will use technological tools and instruments. De Paepe also found important differences in how community officers use this technology in their daily work practices. He makes a distinction between four different styles of community police officers in how they use both digital and traditional methods for information management and in their interactions with citizens and communities. These styles are called “analogue custodian”, “hybrid archivist”, “hybrid mediator” and “digital liaison”.

In the next two contributions, the research perspective shifts from what digital technology means for police and security officers to the perspective of citizens. Both articles concentrate on one specific form of police work that has many inherent potential conflicts: protest policing. **Majsa Storbeck** begins her article with the notion that policing protests and demonstrations has also become more dependent on the use of modern, increasingly complex digital technology. In the literature, it has often been suggested that the use of such technology may have chilling effects on (potential) demonstrators; in other words, that technology will make them refrain from their right to demonstrate. This article tries to add a new perspective on this topic by researching this issue from the perspective of “intersectionality”. It shows that chilling effects are not equally distributed but are also dependent on specific (combinations of) vulnerabilities and power relations. These shape the experiences of individual protesters and, as a consequence, what they do and don’t do. In other words, the impact of technology may differ between individuals because of their identities and related power positions.

The main question in the last article by **Jan Terpstra and Otto Adang** is as follows: to what extent does the digitalization of policing protest contribute to a more abstract nature of policing, and what consequences does this have for

negotiated management in the relationship between police and protesters? Increasing abstractness is understood as a process of dehumanization, decontextualization and distanciation. Negotiated management is a strategy for the police to prevent escalation of conflict and the use of violence by negotiating with protesters and using direct forms of communication. Digitalization may have an impact on the dynamic interplay between police and protesters: a growing awareness among protesters of being surveilled (even if they are not); the dissemination of information by protesters about police (mis)conduct, for instance, through social media; and police officers who become suspicious of protesters and develop a negative image of them. As a consequence, in the dynamic interplay between police and protesters, the use of digital tools may contribute to a more abstract relationship and may decrease the room for negotiated management and de-escalation.

The combination of the six articles shows an impressive diversity in how human actors perceive and act upon digital instruments and AI tools in policing and security. In some cases, these are perceived as creating new behavioural options. In other cases, they may be experienced as disrupting, estranging and limiting freedom. It also shows that the room for human actors in how they will respond to digital technology in policing and security may differ. This may depend on existing cultural arrangements and power relations. On the other hand, digital technology may act as a driver for social, cultural and political change, resulting in complex and context-dependent relations between continuity and change.

Taken together, this Special Issue provides a number of interesting steps for a better understanding of the contradictory reality of the “human factor” in relation to the digitalization and algorithmization of policing and security. However, much more work needs to be done in the study of this field, both in the form of empirical studies of lived experiences in relation to the digitalization of policing and in the development of adequate conceptual and theoretical frameworks.

References

Afzal, M., & Panagiotopoulos, P. (2025). Data in policing: An integrative review. *International Journal of Public Administration*, 48(7), 411-430. <https://doi.org/10.1080/01900692.2024.2360586>.

Balbi, G. (2024). *The digital revolution: A short history of an ideology*. Oxford University Press.

Brayne, S. (2021). *Predict and surveil: Data, discretion, and the future of policing*. Oxford University Press.

Büchi, M., Festic, N., & Latzer, M. (2022). The chilling effects of digital dataveillance: A theoretical model and an empirical research agenda. *Big Data & Society*, 9(1). <https://doi.org/10.1177/20539517211065368>.

Busuioc, M. (2021). Accountable artificial intelligence: Holding algorithms to account. *Public Administration Review*, 81(5), 825-836. <https://doi.org/10.1111/puar.13293>.

Carr, N. (2025). *Superbloom: How technologies of connection tear us apart*. WW Norton & Company.

Marc Schuilenburg & Jan Terpstra

Daub, A. (2020). *What tech calls thinking: An inquiry into the intellectual bedrock of Silicon Valley*. FSG Originals.

Dourish, P., & Gómez Cruz, E. (2018). Datafication and data fiction: Narrating data and narrating with data. *Big Data & Society*, 5(2), 1-10. <https://doi.org/10.1177/2053951718784083>.

Ferguson, A. G. (2017). *The rise of big data policing: Surveillance, race, and the future of law enforcement*. New York University Press.

Hadjimatheou, K., & Fussey, P. (2025). 'The dream to know everything about everyone': Affordances of commercial data systems and digital net-widening in policing. *Theoretical Criminology*, 29(3), 325-345. <https://doi.org/10.1177/13624806251334954>.

Kitchin, R., Davret, J., Kayanan, C. M., & Mutter, S. (2025). Data mobilities: Rethinking the movement and circulation of digital data. *Mobilities*, 20(5), 1002-1020. <https://doi.org/10.1080/17450101.2025.2481309>.

Leese, M. (2022). *Data quality in governance: A definition and a research agenda* (CURATE Working Paper No. 1).

Leese, M. (2024). Data quality in police work. In T. Ø. Kuldova, H. O. I. Gundhus & C. T. Wathne (Eds.), *Policing and intelligence in the global big data era* (Vol. II). Palgrave's Critical Policing Studies (pp. 25-47). Palgrave Macmillan.

Leonelli, S. (2020). Learning from data journeys. In S. Leonelli & N. Tempini (Eds.), *Data journeys in the sciences* (pp. 1-26). Springer Open.

Martinaitis, Ž., Christenko, A., & Antanavičius, J. (2021). Upskilling, deskilling or polarisation? Evidence on change in skills in Europe. *Work, Employment and Society*, 35(3), 451-469. <https://doi.org/10.1177/0950017020937934>.

McNally, R., Mackenzie, A., Hui, A., & Tomomitsu, J. (2012). Understanding the 'Intensive' in 'Data Intensive Research': Data flows in next generation sequencing and environmental networked sensors. *International Journal of Digital Curation*, 7(1), 81-94. <https://doi.org/10.2218/ijdc.v7i1.216>.

Meijer, A., & Wessels, M. (2019). Predictive policing: Review of benefits and drawbacks. *International Journal of Public Administration*, 42(12), 1031-1039. <https://doi.org/10.1080/01900692.2019.1575664>.

Miller, L. (2020, April 21). LAPD will end controversial program that aimed to predict where crime would occur. *Los Angeles Times*. Retrieved 12 October 2025, from www.latimes.com/california/story/2020-04-21/lapd-ends-predictive-policing-program.

Mishra, A., Cao, C., & George, J. (2019). IT induced employment irregularities and deskilling: Impacts on temporary worker welfare. In *Fortieth International Conference on Information Systems*. Association for Information Systems.

Morozov, E. (2025, April 3). The new legislators of Silicon Valley. *The Ideas Letter*. Retrieved 12 October 2025, from www.theideasletter.org/essay/silicon-valleys-new-legislators.

Passchier, R. (2024). *De Vloek van Big Tech. De juridisch-technologische wortels van constitutioneel verval en digitaal feodalisme*. Boom.

Peeters, R., Miller, S., & Schuilenburg, M. (2025). Digital government inclusion: Exploring strategies for inclusive government automation. *Government Information Quarterly*, 42(2). <https://doi.org/10.1016/j.giq.2025.102028>.

Rosa, H. (2019). *Resonanz. Eine Soziologie der Weltbeziehung*. Suhrkamp.

Schauer, F. (1978). Fear, risk and the first amendment: Unraveling the chilling effect. *Boston University Law Review*, 58, 685-732.

Schuilenburg, M. (2025). *Making surveillance public. Why you should be more woke about AI and algorithms* (2nd ed.). Boom.

Schuilenburg, M., & Peeters, R. (2024). Voorbij de system-level bureaucratie: Over datastromen, algoritmes en inclusieve AI in de databureaucratie. *Beleid en Maatschappij*, 51(3), 278-293. <https://doi.org/10.5553/BenM/138900692024051003006>.

Schuilenburg, M., & Eski, Y. (2025). Data sharing: A case-study of luxury surveillance by Tesla. *Surveillance & Society*, 23(2), 199-217. <https://doi.org/10.24908/ss.v23i2.18108>.

Schuilenburg, M., & Soudijn, M. (2023). Big data policing: The use of big data and algorithms by the Netherlands Police. *Policing: A Journal of Policy and Practice*, 17, paad061. <https://doi.org/10.1093/police/paad061>.

Slobogin, C., & Brayne, S. (2022). Surveillance technologies and constitutional law. *Annual Review of Criminology*, 6, 1-22. <https://doi.org/10.1146/annurev-criminol-030421-035102>.

Stol, W., Strikwerda, L., Jansen, J., & Schreurs, W. (2025). *Politiestraatwerk en Informatiegebruik. Een longitudinale studie (1991-2023) over gevolgen van digitalisering*. Politie & Wetenschap.

Stol, W., Wacher Lentz, L., Naarttijärvi, M., Sunde, I. M., Strikwerda, L., & Jansen, J. (Eds.). (2025). *Legal and ethical issues in digital policing. policing in the digital society network yearbook 2025*. Boom.

Storbeck, M., Jacobs, G., Schuilenburg, M., & van den Akker, R. (2025). Surveillance experiences of extinction rebellion activists and police: Unpacking the technologization of Dutch protest policing. *Big Data & Society*, <https://doi.org/10.1177/20539517241307892>.

Terpstra, J., Fyfe, N. R., & Salet, R. (2019). The abstract police. Unintended consequences of organizational change of the police. *The Police Journal*, 92(4), 339-359. <https://doi.org/10.1177/0032258X18817999>.

Terpstra, J., & Salet, R. (2023). Het einde van PredPol, het einde van predictive policing? *Cahiers Politiestudies*, 66, 209-216.

Terpstra, J., & Salet, R. (2026). The loss of 'the Human Element'. Abstract police and abstract policing. In A. Henry & N. R. Fyfe (Eds.), *Research handbook of policing and society*. Elgar (to be published).

Terpstra, J., Salet, R., van Duijneveldt, I., & Havinga, T. (2021). *Gebiedsgebonden politiewerk in ontwikkeling. Onderzoek naar basisteamen in een digitale en superdiverse samenleving*. Politie & Wetenschap.

Thüne, M., Klaas, K., & Feltes, T. (Eds.). (2022). *Digitale Polizei. Eindsatzfelder, Potenziale, Grenzen und Misstände*. Verlag für Polizeiwissenschaft.

Turkle, S. (2015). *Reclaiming conversation. The power of talk in a digital age*. Penguin.

Van Brakel, R., & Govaerts, L. (2024). Exploring the impact of algorithmic policing on social justice: Developing a framework for rhizomatic harm in the pre-crime society. *Theoretical Criminology*, 29(1), 91-109. <https://doi.org/10.1177/13624806241246267>.

Verhoeven, K. (2023). *De Democratie Crasht. Politieke onmacht in het digitale tijdperk. Contact*.

Waardenburg, L. (2021). *Behind the scenes of artificial intelligence: Studying how organizations cope with machine learning in practice*. Haveka.

Widlak, A., Van Eck, M., & Peeters, R. (2021). Towards principles of good digital administration: Fairness, accountability and proportionality in automated decision-making. In M. Schuilenburg & R. Peeters (Eds.), *The algorithmic society. Technology, power, and knowledge* (pp. 67-83). Routledge.